Neuroplasticity – report and video from ABC Lateline


The research into neuroplasticity in neuro-science gives us an insight into what is possible for NLP interventions and generally how the brain functions.

ABC Lateline report on Neuroplasticity including an interview with NORMAN DOIDGE, a PSYCHIATRIST in Canada and author of The Brain that Changes Itself.

In recent years, many experts have changed the way they think about the brain and now believe it can actually reinvent itself. The theory’s called neuroplasticity, the idea that the brain can build new connections to compensate for injury or disease….

…She was given an antibiotic for a routine hysterectomy which poisoned her inner ear, so that 97 per cent of what’s called the vestibular apparatus or the balance organ in the inner ear, was blown out. And one day she woke up and she had no balance. She was a woman who felt she was perpetually falling. And in fact, even when she fell to the floor, the sense of falling didn’t go away. She felt a trap door opened up and swallowed her….. Now, Dr. Paul Bach-y-Rita, had been working on sensory substitution and he found a way to give her a hat that contained something called an accelerometer, which is like a gyroscope. It told her her position in space. It fed information to a computer that fed the information back to something about the size of a stick of chewing gum that had about 100 little electrodes on it that gave little sparks on her tongue – very gentle stimulation that felt like champagne bubbles, so that if she rolled forward she would get champagne bubbles rolling forward telling her the position of her head. And I was there when this cure occurred and she couldn’t stand up, she put on the hat, they turned on the machine and suddenly it was as though there was total peace of mind that she had and her balance was restored.

…what Descartes did is he was trying to solve a problem, which is that it seemed that the rules of mind were different, would follow logic or maybe the rules of emotion, and the brain seemed to follow, you know, the physical laws of Galileo and the mechanical laws of movement. And he argued that the mind will influence the brain, but he could never persuasively show how that happens. And we still haven’t totally solved that problem. But what we can do now, which is very, very exciting, is we can actually see a person in the process of thinking and the number of brain cells – the number of connections between brain cells being altered.

Attention turns out to be very, very important for speeding up plastic change. And many people with strokes have a problem with attention.

For more details, watch the ABC Video ABC Lateline report on Neuroplasticity or read the transcript from the program.

To Learn more also visit: http://www.normandoidge.com, Listen to a Podcast of Norman Doidge, or Listen online

  This book is about the revolutionary discovery that the human brain can change itself, as told through the stories of the scientists, doctors, and patients who have together brought about these astonishing transformations. Without operations or medications, they have made use of the brain’s hitherto unknown ability to change. Some were patients who had what were thought to be incurable brain problems; others were people without specific problems who simply wanted to improve the functioning of their brains or preserve them as they aged. For four hundred years this venture would have been inconceivable because mainstream medicine and science believed that brain anatomy was fixed. The common wisdom was that after childhood the brain changed only when it began the long process of decline; that when brain cells failed to develop properly, or were injured, or died, they could not be replaced. Nor could the brain ever alter its structure and find a new way to function if part of it was damaged. The theory o

f the unchanging brain decreed that people who were born with brain or mental limitations, or who sustained brain damage, would be limited or damaged for life. Scientists who wondered if the healthy brain might be improved or preserved through activity or mental exercise were told not to waste their time.      A neurological nihilism—a sense that treatment for many brain problems was ineffective or even unwarranted—had taken hold, and it spread through our culture, even stunting our overall view of human nature. Since the brain could not change, human nature, which emerges from it, seemed necessarily fixed and unalterable as well.  The belief that the brain could not change had three major sources: the fact that brain-damaged patients could so rarely make full recoveries; our inability to observe the living brain’s microscopic activities; and the idea—dating back to the beginnings of modern science—that the brain is like a glorious machine. And while machines do many extraordinary things, they don’t change and grow.  I became interested in the idea of a changing brain because of my work as a research psychiatrist and psychoanalyst. When patients did not progress psychologically as much as hoped, often the conventional medical wisdom was that their problems were deeply “hardwired” into an unchangeable brain. “Hardwiring” was another machine metaphor coming from the idea of the brain as computer hardware, with permanently connected circuits, each designed to perform a specific, unchangeable function.  When I first heard news that the human brain might not be hardwired, I had to investigate and weigh the evidence for myself. These investigations took me far from my consulting room.  I began a series of travels, and in the process I met a band of brilliant scientists, at the frontiers of brain science, who had, in the late 1960s or early 1970s, made a series of unexpected discoveries. They showed that the brain changed its very structure with each different activity it performed, perfecting its circuits so it was better suited to the task at hand. If certain “parts” failed, then other parts could sometimes take over. The machine metaphor, of the brain as an organ with specialized parts, could not fully account for changes the scientists were seeing. They began to call this fundamental brain property “neuroplasticity.”  Neuro is for “neuron,” the nerve cells in our brains and nervous systems. Plastic is for “changeable, malleable, modifiable.” At first many of the scientists didn’t dare use the word “neuroplasticity” in their publications, and their peers belittled them for promoting a fanciful notion. Yet they persisted, slowly overturning the doctrine of the unchanging brain. They showed that children are not always stuck with the mental abilities they are born with; that the damaged brain can often reorganize itself so that when one part fails, another can often substitute; that if brain cells die, they can at times be replaced; that many “circuits” and even basic reflexes that we think are hardwired are not. One of these scientists even showed that thinking, learning, and acting can turn our genes on or off, thus shaping our brain anatomy and our behavior—surely one of the most extraordinary discoveries of the twentieth century.  In the course of my travels I met a scientist who enabled people who had been blind since birth to begin to see, another who enabled the deaf to hear; I spoke with people who had had strokes decades before and had been declared incurable, who were helped to recover with neuroplastic treatments; I met people whose learning disorders were cured and whose IQs were raised; I saw evidence that it is possible for eighty-year-olds to sharpen their memories to function the way they did when they were fifty-five. I saw people rewire their brains with their thoughts, to cure previously incurable obsessions and traumas. I spoke with Nobel laureates who were hotly debating how we must rethink our model of the brain now that we know it is ever changing.  The idea that the brain can change its own structure and function through thought and activity is, I believe, the most important alteration in our view of the brain since we first sketched out its basic anatomy and the workings of its basic component, the neuron. Like all revolutions, this one will have profound effects, and this book, I hope, will begin to show some of them. The neuroplastic revolution has implications for, among other things, our understanding of how love, sex, grief, relationships, learning, addictions, culture, technology, and psychotherapies change our brains. All of the humanities, social sciences, and physical sciences, insofar as they deal with human nature, are affected, as are all forms of training. All of these disciplines will have to come to terms with the fact of the self-changing brain and with the realization that the architecture of the brain differs from one person to the next and that it changes in the course of our individual lives.  While the human brain has apparently underestimated itself, neuroplasticity isn’t all good news; it renders our brains not only more resourceful but also more vulnerable to outside influences. Neuroplasticity has the power to produce more flexible but also more rigid behaviors—a phenomenon I call “the plastic paradox.” Ironically, some of our most stubborn habits and disorders are products of our plasticity. Once a particular plastic change occurs in the brain and becomes well established, it can prevent other changes from occurring. It is by understanding both the positive and negative effects of plasticity that we can truly understand the extent of human possibilities.  Because a new word is useful for those who do a new thing, I call the practitioners of this new science of changing brains “neuroplasticians.” What follows is the story of my encounters with them and the patients they have transformed.  Preface
This book is about the revolutionary discovery that the human brain can change itself, as told through the stories of the scientists, doctors, and patients who have together brought about these astonishing transformations. Without operations or medications, they have made use of the brain’s hitherto unknown ability to change. Some were patients who had what were thought to be incurable brain problems; others were people without specific problems who simply wanted to improve the functioning of their brains or preserve them as they aged. For four hundred years this venture would have been inconceivable because mainstream medicine and science believed that brain anatomy was fixed. The common wisdom was that after childhood the brain changed only when it began the long process of decline; that when brain cells failed to develop properly, or were injured, or died, they could not be replaced. Nor could the brain ever alter its structure and find a new way to function if part of it was damaged. The theory of the unchanging brain decreed that people who were born with brain or mental limitations, or who sustained brain damage, would be limited or damaged for life. Scientists who wondered if the healthy brain might be improved or preserved through activity or mental exercise were told not to waste their time. A neurological nihilism—a sense that treatment for many brain problems was ineffective or even unwarranted—had taken hold, and it spread through our culture, even stunting our overall view of human nature. Since the brain could not change, human nature, which emerges from it, seemed necessarily fixed and unalterable as well. The belief that the brain could not change had three major sources: the fact that brain-damaged patients could so rarely make full recoveries; our inability to observe the living brain’s microscopic activities; and the idea—dating back to the beginnings of modern science—that the brain is like a glorious machine. And while machines do many extraordinary things, they don’t change and grow. I became interested in the idea of a changing brain because of my work as a research psychiatrist and psychoanalyst. When patients did not progress psychologically as much as hoped, often the conventional medical wisdom was that their problems were deeply “hardwired” into an unchangeable brain. “Hardwiring” was another machine metaphor coming from the idea of the brain as computer hardware, with permanently connected circuits, each designed to perform a specific, unchangeable function. When I first heard news that the human brain might not be hardwired, I had to investigate and weigh the evidence for myself. These investigations took me far from my consulting room. I began a series of travels, and in the process I met a band of brilliant scientists, at the frontiers of brain science, who had, in the late 1960s or early 1970s, made a series of unexpected discoveries. They showed that the brain changed its very structure with each different activity it performed, perfecting its circuits so it was better suited to the task at hand. If certain “parts” failed, then other parts could sometimes take over. The machine metaphor, of the brain as an organ with specialized parts, could not fully account for changes the scientists were seeing. They began to call this fundamental brain property “neuroplasticity.” Neuro is for “neuron,” the nerve cells in our brains and nervous systems. Plastic is for “changeable, malleable, modifiable.” At first many of the scientists didn’t dare use the word “neuroplasticity” in their publications, and their peers belittled them for promoting a fanciful notion. Yet they persisted, slowly overturning the doctrine of the unchanging brain. They showed that children are not always stuck with the mental abilities they are born with; that the damaged brain can often reorganize itself so that when one part fails, another can often substitute; that if brain cells die, they can at times be replaced; that many “circuits” and even basic reflexes that we think are hardwired are not. One of these scientists even showed that thinking, learning, and acting can turn our genes on or off, thus shaping our brain anatomy and our behavior—surely one of the most extraordinary discoveries of the twentieth century. In the course of my travels I met a scientist who enabled people who had been blind since birth to begin to see, another who enabled the deaf to hear; I spoke with people who had had strokes decades before and had been declared incurable, who were helped to recover with neuroplastic treatments; I met people whose learning disorders were cured and whose IQs were raised; I saw evidence that it is possible for eighty-year-olds to sharpen their memories to function the way they did when they were fifty-five. I saw people rewire their brains with their thoughts, to cure previously incurable obsessions and traumas. I spoke with Nobel laureates who were hotly debating how we must rethink our model of the brain now that we know it is ever changing. The idea that the brain can change its own structure and function through thought and activity is, I believe, the most important alteration in our view of the brain since we first sketched out its basic anatomy and the workings of its basic component, the neuron. Like all revolutions, this one will have profound effects, and this book, I hope, will begin to show some of them. The neuroplastic revolution has implications for, among other things, our understanding of how love, sex, grief, relationships, learning, addictions, culture, technology, and psychotherapies change our brains. All of the humanities, social sciences, and physical sciences, insofar as they deal with human nature, are affected, as are all forms of training. All of these disciplines will have to come to terms with the fact of the self-changing brain and with the realization that the architecture of the brain differs from one person to the next and that it changes in the course of our individual lives. While the human brain has apparently underestimated itself, neuroplasticity isn’t all good news; it renders our brains not only more resourceful but also more vulnerable to outside influences. Neuroplasticity has the power to produce more flexible but also more rigid behaviors—a phenomenon I call “the plastic paradox.” Ironically, some of our most stubborn habits and disorders are products of our plasticity. Once a particular plastic change occurs in the brain and becomes well established, it can prevent other changes from occurring. It is by understanding both the positive and negative effects of plasticity that we can truly understand the extent of human possibilities. Because a new word is useful for those who do a new thing, I call the practitioners of this new science of changing brains “neuroplasticians.” What follows is the story of my encounters with them and the patients they have transformed. Preface
Advertisements

One thought on “Neuroplasticity – report and video from ABC Lateline

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s